Scalable Machine Learning on Big Data using Apache Spark

Instructor: Romeo Kienzler

Skills you'll gain

  •   Machine Learning Methods
  •   Data Storage
  •   Exploratory Data Analysis
  •   Machine Learning Algorithms
  •   Apache Spark
  •   Data Pipelines
  •   Statistical Analysis
  •   Applied Machine Learning
  •   Data Processing
  •   PySpark
  •   Distributed Computing
  •   Big Data
  • There are 4 modules in this course

    Apache Spark is an open source framework that leverages cluster computing and distributed storage to process extremely large data sets in an efficient and cost effective manner. Therefore an applied knowledge of working with Apache Spark is a great asset and potential differentiator for a Machine Learning engineer. After completing this course, you will be able to: - gain a practical understanding of Apache Spark, and apply it to solve machine learning problems involving both small and big data - understand how parallel code is written, capable of running on thousands of CPUs. - make use of large scale compute clusters to apply machine learning algorithms on Petabytes of data using Apache SparkML Pipelines. - eliminate out-of-memory errors generated by traditional machine learning frameworks when data doesn’t fit in a computer's main memory - test thousands of different ML models in parallel to find the best performing one – a technique used by many successful Kagglers - (Optional) run SQL statements on very large data sets using Apache SparkSQL and the Apache Spark DataFrame API. Enrol now to learn the machine learning techniques for working with Big Data that have been successfully applied by companies like Alibaba, Apple, Amazon, Baidu, eBay, IBM, NASA, Samsung, SAP, TripAdvisor, Yahoo!, Zalando and many others. NOTE: You will practice running machine learning tasks hands-on on an Apache Spark cluster provided by IBM at no charge during the course which you can continue to use afterwards. Prerequisites: - basic python programming - basic machine learning (optional introduction videos are provided in this course as well) - basic SQL skills for optional content The following courses are recommended before taking this class (unless you already have the skills) https://www.coursera.org/learn/python-for-applied-data-science or similar https://www.coursera.org/learn/machine-learning-with-python or similar https://www.coursera.org/learn/sql-data-science for optional lectures

    Week 2: Scaling Math for Statistics on Apache Spark

    Week 3: Introduction to Apache SparkML

    Week 4: Supervised and Unsupervised learning with SparkML

    Explore more from Machine Learning

    ©2025  ementorhub.com. All rights reserved